Linear Algebra II

11/04/2012, Wednesday, 9:00-12:00

 $\mathbf{1}$ (8+7=15 pt)

Inner product spaces

- (a) Consider the vector space \mathbb{R}^n . Show that $\langle x, y \rangle = x^T M y$ is an inner product if and only if $M \in \mathbb{R}^{n \times n}$ is a symmetric positive definite matrix.
- (b) Let V be an inner product space and let $||v|| = \sqrt{\langle v, v \rangle}$. Prove that

$$||x - y||^2 + ||x + y||^2 = 2||x||^2 + 2||y||^2$$

for all $x, y \in V$.

(2+2+5+6=15 pt)

Orthogonal matrices

Let $A \in \mathbb{R}^{n \times n}$.

- (a) Show that if (I+A) is nonsingular then $(I-A)(I+A)^{-1}=(I+A)^{-1}(I-A)$.
- (b) Show that if $A = -A^T$ then (I + A) is nonsingular.
- (c) Show that if $A = -A^T$ then $(I A)(I + A)^{-1}$ is an orthogonal matrix.
- (d) Show that if A is orthogonal and (I+A) is nonsingular then $B=-B^T$ where $B=(I-A)(I+A)^{-1}$

 $3 \quad (8+7=15 \text{ pt})$

Diagonalization and positive definite matrices

Let

$$A = \begin{bmatrix} a & b & 0 \\ c & d & c \\ 0 & b & a \end{bmatrix}$$

where a, b, c, and d are real numbers.

- (a) For which values of (a, b, c, d) is the matrix A unitarily diagonalizable?
- (b) For which values of (a, b, c, d) is the matrix A positive definite? (Warning: The matrix A is not necessarily symmetric!)

- (a) Let $v \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$. Show that the subspace span $\{v, Av, \dots, A^{n-1}v\}$ is invariant under A.
- (b) Let

$$M = \begin{bmatrix} 0 & 0 & -1+a \\ 1 & 0 & -3 \\ 0 & 1 & -3 \end{bmatrix}.$$

Find $(M+I)^{3000}$.

5 (15 pt)

Singular value decomposition

Find a singular value decomposition for the matrix

$$\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

and its best rank 1 approximation in the Frobenius norm.

6 (15 pt)

Jordan canonical form

Put the matrix

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}.$$

into Jordan canonical form.

Hint: Note that $(a \pm 1)^3 = a^3 \pm 3a^2 + 3a \pm 1$.

10 pt gratis